Achieving planar plasmonic subwavelength resolution using alternately arranged insulator-metal and insulator-insulator-metal composite structures
نویسندگان
چکیده
This work develops and analyzes a planar subwavelength device with the ability of one-dimensional resolution at visible frequencies that is based on alternately arranged insulator-metal (IM) and insulator-insulator-metal (IIM) composite structures. The mechanism for the proposed device to accomplish subwavelength resolution is elucidated by analyzing the dispersion relations of the IM-IIM composite structures. Electromagnetic simulations based on the finite element method (FEM) are performed to verify that the design of the device has subwavelength resolution. The ability of subwavelength resolution of the proposed device at various visible frequencies is achieved by slightly varying the constituent materials and geometric parameters. The proposed devices have potential applications in multi-functional material, real-time super-resolution imaging, and high-density photonic components.
منابع مشابه
Design and Simulation of a Metal-Insulator-Metal Filter Based on Plasmonic Split Ring
In this paper, a plasmonic filter made of a split ring, two U-shaped structures and two straight waveguides is designed and investigated. In the proposed structure, the split ring and U-shaped structures are situated between straight waveguides. Simulations are done based on FDTD method. Split ring, U-shaped structures and straight waveguides are made of air in the silver background. In the pro...
متن کاملUnderstanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry
We elucidate the dispersion behavior of deep-subwavelength propagating modes in coaxial plasmonic structures by making an explicit connection with the planar metal-insulator-metal geometry. We provide an intuitive picture that allows for a qualitative understanding and a quantitative prediction of the entire dispersion behavior, which includes the number of modes at every frequency, the modal p...
متن کاملPropose, Analysis and Simulation of an All Optical Full Adder Based on Plasmonic Waves using Metal-Insulator-Metal Waveguide Structure
This paper proposes a full adder with minimum power consumption and lowloss with a central frequency of 1550nm using plasmonic Metal-Insulator-Metal (MIM)waveguide structure and rectangular cavity resonator. This full adder operates based onXOR and AND logic gates. In this full adder, the resonant wave composition of the firstand second modes has been used and we have ob...
متن کاملSpoof plasmon analogue of metal-insulator-metal waveguides.
We describe the properties of guided modes in metallic parallel plate structures with subwavelength corrugation on the surfaces of both conductors, which we refer to as spoof-insulator-spoof (SIS) waveguides, in close analogy to metal-insulator-metal (MIM) waveguides in plasmonics. A dispersion relation for SIS waveguides is derived, and the modes are shown to arise from the coupling of convent...
متن کاملGeometries and materials for subwavelength surface plasmon modes.
Plasmonic waveguides can guide light along metal-dielectric interfaces with propagating wave vectors of greater magnitude than are available in free space and hence with propagating wavelengths shorter than those in vacuum. This is a necessary, rather than sufficient, condition for subwavelength confinement of the optical mode. By use of the reflection pole method, the two-dimensional modal sol...
متن کامل